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ABSTRACT 
 

As the population of man-made debris orbiting the Earth increases, so does the risk of damaging collisions. The 
Inter-Agency Space Debris Coordination Committee (IADC) has issued space debris mitigation guidelines including 
a key recommendation that before mission’s end, spacecraft should move far enough from GEO so as not to be an 
operational hazard to other objects in active missions. It can be extremely difficult to determine if a spacecraft or 
operator is in compliance with this guideline, as it requires prediction of future actions based upon many data types. 
Furthermore, there has been no comprehensive assessment of the adequacy or validity of the IADC 
recommendations. The EU strives for a Code of Conduct in space, the United Nations-Committee On Peaceful Uses 
of Outer Space (UN-COPUOS) strives for guidelines to ensure the Long Term Sustainability of Space Activities 
(LTSSA), the FAA is concerned with Space Traffic Management (STM), etc. If rules, policies, guidelines, and laws 
are put in place, how can any entity know who and what is adhering to them, when we don’t even know how to 
quantify and assess behavior of space objects? The University of Arizona aims to address this salient issue. 
 
As part of its new Space Object Behavioral Sciences (SOBS) initiative, the University of Arizona is developing an 
ontology-based system to support integration, use, and sharing of space domain data. As a first use-case, we will test 
the system’s ability to assess compliance with the IADC recommendation to move beyond GEO at the end of a 
mission as well as the adequacy and validity of recommendations. We describe the relevant data types gathered for 
this use-case, present a prototype ontology, and outline methods for combining semantic analysis with 
astrodynamics modeling. Without loss of generality, we present this method as an approach that will form the 
foundation of SOBS and be used to address pressing challenges in Space Situational Awareness (SSA), Orbital 
Safety, LTSSA, and STM. 
 

1. INTRODUCTION 
 
“It has been a common understanding since the United Nations Committee on the Peaceful Uses of 
Outer Space (UN-COPUOS) published its Technical Report on Space Debris in 1999 [1], that man-
made space debris today poses little risk to ordinary unmanned spacecraft in Earth orbit, but the 
population of debris is growing, and the probability of collisions that could lead to potential damage 
will consequently increase. It has, however, now become common practice to consider the collision 
risk with orbital debris in planning manned missions. So the implementation of some debris mitigation 
measures today is a prudent and necessary step towards preserving the space environment for future 
generations.”  [2]  

 
As the population of debris orbiting the Earth increases, so does the risk of damaging collisions. The risk is 
particularly high with non-operational spacecraft that cannot be maneuvered to avoid collisions and may degrade 
over time into multiple objects. The Inter-Agency Space Debris Coordination Committee (IADC) has issued space 
debris mitigation guidelines [2], but no method currently exists to effectively assess whether or not a spacecraft or 
operator is in compliance with these guidelines. In this paper, we outline a method for assessing IADC guideline 



compliance as an initial use case for Space Object Behavioral Sciences (SOBS). The use case is guiding the design 
and construction of an ontology-based proof of concept decision support system. 
 

2. IADC GUIDELINES 
 
The Inter-Agency Space Debris Coordination Committee (IADC) is an international forum of governmental bodies 
that coordinates activities related to man-made and natural debris in space. Its primary purposes are to exchange 
information on research activities, to facilitate opportunities for co-operation in space debris research, to review the 
progress of ongoing co-operative activities, and to identify debris mitigation options [1]. The IADC defines space 
debris as “all man-made objects including fragments and elements thereof, in Earth orbit or re-entering the 
atmosphere, that are non-functional”. They have issued guidelines for mitigating the creation of space debris. These 
guidelines are based on common principles from space debris mitigation standards developed by various national 
agencies. They cover the overall environmental impact of the missions, especially in protected regions of space such 
as the Low Earth Orbit Region (LEO) and Geosynchronous Orbit Region (GEO).  
 
IADC guidelines focus on: 

1. Limitation of debris released during normal operations  
2. Minimization of the potential for on-orbit break-ups  
3. Post-mission disposal  
4. Prevention of on-orbit collisions. 

The guidelines are intended for use during mission planning and spacecraft design and operation, but operators of 
spacecraft that were launched prior to issuance of the guidelines are encouraged to follow the guidelines to the 
greatest extent possible. 
 
For our proof of concept, we focus on post-mission disposal of resident space objects (RSOs) in GEO, excluding the 
component of minimizing the potential for post-mission break-ups resulting from stored energy. The IADC 
Guidelines state the following regarding post-mission disposal: 

 
3. A SPACE OBJECT BEHAVIOR APPROACH TO ASSESSING IADC COMPLIANCE 

 
Space Object Behavioral Sciences (SOBS) is the study of objects in space to quantify and predict their behavior and 
support space situational awareness (SSA) and space safety. The mission of University of Arizona (UA)’s SOBS 
program is “To assemble and lead the world’s top multi-disciplinary science and technology research and 
development talent and focus it to solve problems requiring rigorous and comprehensive capabilities in assessing, 
quantifying, and predicting the behavior of objects in space, both man-made and natural.” The SOBS initiative is 
developing an ontology-based information fusion system to support integration, use, and sharing of space domain 
data for applications such as threat assessment and decision support. We describe ongoing development of that 
system in this paper. 

Spacecraft that have terminated their mission should be maneuvered far enough away from GEO so as 
not to cause interference with spacecraft or orbital stage still in geostationary orbit. The maneuver should 
place the spacecraft in an orbit that remains above the GEO protected region.  

The IADC and other studies have found that fulfilling the two following conditions at the end of the 
disposal phase would give an orbit that remains above the GEO protected region:  

1. A minimum increase in perigee altitude of 235 km + (1000 CR*A/m), where  

• C
R 

is the solar radiation pressure coefficient  
• A/m is the aspect area to dry mass ratio (m2kg-1)  
• 235 km is the sum of the upper altitude of the GEO protected region (200 km) and the maximum 

descent of a re-orbited spacecraft due to luni-solar & geopotential perturbations (35 km).  

2. An eccentricity less than or equal to 0.003.  



Fig. 1 provides a high level view of the workflow of UA’s planned information fusion system. Source data from 
multiple hard (physics-based) and soft (human-based) sources are stored in the CyVerse Data Store [3], where they 
serve as inputs to processing (1) such as Space Object and Event Detection Registration. Processed data, annotated 
with metadata keyed to the Space Object Behavior Ontology (SOBO) undergoes data fusion (2), which essentially 
converts them to instances of SOBO classes in the form of Resource Description Format (RDF) triples [4]. 
“Triplified” data are stored in the SOBS-Knowledge Base (KB), a graph database whose nodes represent instances 
of entities in SOBO connected by SOBO object, data, and annotation properties. Through various query processes, 
information is extracted from the KB and used in knowledge generation (3) processes such as Bayesian Network 
analysis, to produce useful information or figures of merit, such as whether or not an object is compliant with 
IADC guidelines and likely to remain so in the future. 

As an initial use-case, we aim to demonstrate the 
feasibility of a system for gathering hard data inputs 
(e.g., orbit parameters) for both active and retired 
objects in or just beyond GEO, associating them with the 
semantic content of an ontology, and determining if the 
objects are in compliance with the IADC 
recommendation to move beyond GEO at mission’s end. 
An auxiliary but important goal of this use-case is to 
promote open-source development of resources for safe 
space operations. 
 

4. DATA COLLECTION  
 
Ultimately we plan to collect softs data related to 
purposive human behavior, including news stories, space 
agency reports, and social media (Tweets), along with 
hard data. In this paper, we focus on hard data collection 
and analysis. 
 

4.1 Astrometric and photometric data 
We are observing three classes of objects: (1) active 
GEO satellites, (2) inactive satellites that have been 
successfully placed in the GEO graveyard orbit and (3) 
inactive satellites known not to have been disposed of 
into the graveyard orbit (Table 1). We will also attempt 

to observe satellites that are reported to be near the end of their life or are being transitioned to the GEO graveyard 
orbit. Astrometric data (i.e. time-tagged line-of-sight detections) for our targets are collected from (a) (Dorne) 
Tucson, Arizona, and (b) (Westeros) Fresno, California using Raven-class telescopes (Table 2). Nightly 
observations are made remotely in an automated scripted mode from astronomical twilight to dawn. Charged Couple 
Device (CCD) camera exposure times of 3-5 seconds are used to prevent significant trailing of field stars in the rate-
tracked images for atrometric measurements. The observing cadence for objects in GEO for orbit determination 
requires three observations every 18 minutes, with at least three tracking revisits in the course of a single night [5]. 
Complementary to astrometric observations, we are collecting photometric (observed spatio-temporal space object 
flux intensity) data to infer the rotation state of RSOs. The observational cadence for this task depends upon the 
rotation period of the object.  
 
Table 1. Example list of satellites for observation 

Active in GEO Inactive, in GEO Graveyard Inactive, not in GEO Graveyard 
33278 INMARSAT-4 F3 38868 BREEZE-M R/B 3691 TACSAT 1 
28868 ANIK F1R 26761 XM-1 (ROLL) 25924 ABS 6 (LMI 1) 
28884 GALAXY 15 23816 INTELSAT 707 14134 PALAPA B1 

 
 

 

 
Fig. 1. Overview of the SOBS space data 
information fusion system. 



 

Table 2. Telescope and detector parameters used for initial data collection 

Site Telescope Detector Field of View Pixel Scale 
Dorne  0.5-m F/2.9 Newtonian KAF6303  38.3’x38.3’ 0.56”/pixel (unbinned) 

Westeros 0.37-m F/9 RC KAF16803 60’x41.2’ 1.21”/pixel (unbinned) 

Automated hard data collection is accomplished using a set of Python scripts that control various hardware 
components including initialization, sorting two-line elements (TLEs) to calculate the position of the target, sensor 
pointing, and CCD camera control and focus. Collection requires minimal human intervention during the course of 
the observing process. The data are transferred to our CyVerse cloud data store in near real time (NRT) for 
processing. 

4.2 Processing of astrometric and photometric data products 
Our initial assessment of a given RSO’s compliance with IADC guidelines is based on foundational knowledge of 
that RSO’s orbit, orientation, and inferred maneuver behavior, and history (where relevant). The activities, methods, 
and tools being used to compute these data include the following tools: 

• Air Force Research Laboratory (AFRL)’s Ananke software provides methods to model and evaluate 
candidate sensors and algorithmic approaches to generating Space Domain Awareness (SDA) knowledge. 
Ananke is a single integrated simulation and analysis tool that possesses dynamical systems and Bi-
directional Reflectance Distribution Function (BRDF) modeling, verified sensor models, as well as 
advanced initial orbit determination and characterization filters. Ananke will be used to generate simulated 
measurements to test the Multiple Model Adaptive Estimation (MMAE) and Interactive Multiple-Model 
(IMM) algorithms. 

• Applied Defense Solution (ADS)’s Efficient Photometry In-Frame Calibration (EPIC) software [6] is 
used to automatically produce photometric and astrometric data from raw telescope image frames. EPIC 
implements an automated background normalization technique that eliminates the requirement to capture 
dark and flat calibration images. The technique simultaneously corrects for dark noise, shot noise, and CCD 
quantum efficiency/optical path vignetting effects. With EPIC, a constant detection threshold is applied for 
constant false alarm rate (CFAR) object detection without the need for aperture photometry corrections. 
The detected pixels are summed (without further correction) for an accurate instrumental magnitude 
estimate. 

• AFRL’s Constrained Admissible Region-Multiple Hypothesis Filter (CAR-MHF) [7] performs orbit 
determination and data association (i.e. assigning detections to unique RSOs) for multiple objects using 
astrometric data derived from EPIC’s output. CAR-MHF combines the statistical track initialization 
capability of the CAR with an MHF that implements an unscented Kalman filter (UKF) to associate future 
measurements to the newly initialized track and recursively refine the trajectory and uncertainties.  

• Space object attitude (inertial-to-body orientation) profiles are determined using an MMAE [8]. The 
MMAE uses a parallel bank of filters, each operating under a different hypothesis to determine an estimate 
of the physical system under consideration. Each filter employs the UKF estimation approach, processing 
astrometric and photometric data to refine the RSO’s orbit while inferring the RSO’s attitude and body 
rates. 

• The IMM is used to detect orbital maneuvers [9]. The IMM estimator has the ability to “switch” from one 
model to another in a probabilistic manner, modeled by a Markov sequence. Like the MMAE approach, the 
IMM estimator also consists of a bank of model based filters running in parallel at each cycle. As opposed 
to the MMAE which converges to a “winner take all” method, the initial IMM estimate at the beginning of 
each cycle for each filter is a mixture of all the most recent estimates from the single-model-based filters. 
This feature enables the IMM estimator to effectively take into account the history of the RSO behavior 
modes without the exponential growth in the computation and storage requirements needed by the 
optimally derived estimator. 

5. A PROTOTYPE SPACE OBJECT BEHAVIOR ONTOLOGY  
 
Ontologies are a way to represent knowledge within a given domain, by describing the types of entities (classes) in 



the domain and the logical relations among them, using machine-readable language. By providing standardized, 
computable definitions for the terms used by scientists, ontologies make information explicit to both humans and 
computers and contribute to reproducible science. Ontologies support computer applications that need to find, 
retrieve, integrate, and analyze large quantities of data from multiple and disparate sources. We are developing the 
Space Object Behavior Ontology (SOBO) as part of an information fusion and decision support system that can 
ingest data from multiple sources in an automated fashion and aid data and knowledge discovery. 
 
The SOBO is an application ontology—that is, an ontology built for a specific set of purposes and needs. This is in 
contrast to a domain ontology, which strives to thoroughly model a particular domain such as RSOs or planetary 
features, and must serve a broad variety of use cases. Fig. 1 shows a set of domains that will ultimately be needed to 
support SOBO. The existence of domain ontologies such as [10-12] can support SOBO, and we support the principle 
of reusing existing ontologies. However, we recognize that reuse may conflict with our goal of open source 
development, so we remain open to various reuse approaches.  

 
Fig. 1. Domains needed to describe Space Object Behavior 

5.1 Design elements of SOBO 
Design and development of SOBO follows widely-accepted best practices including modularity, compatibility with 
other ontologies and semantic web applications, consistent internal application of ontology design patterns (ODPs), 
and reuse of existing ODPs [13]. Based upon the successful application and utility of many biological ontologies 
(e.g., [14-16]), along with our desire to build an open resource, we adhere to OBO Foundry principles [17] such as 
openness, versioning, text definitions, and maintenance. We use the Basic Formal Ontology [18] as an upper 
ontology, because it provides a solid logical framework that already has been put to the test in many scientific 
ontologies. SOBO is open source and freely available through our GitHub organization [19]. SOBS community 
members can provide suggestions or feedback using the GitHub issue tracker.  

Primary considerations for the design of SOBO are the dynamic nature of RSOs, uncertainty associated with 
estimates of their states, and the role of data provenance in assigning confidences or probabilities to final estimates 
of RSO states. In addition to classes for man-made space objects and the processes they are involved in (e.g., orbits, 
maneuvers, communication), SOBO covers the qualities or states of RSOs (orbit and attitude state, and are they 
active or inactive, compliance with IADC guidelines, etc.). Because SOBO is being built to fuse data from multiple 
sources, classes for observation and data are key elements. 

Time is an essential aspect of SOBO, because RSOs can change their state through time: Maneuvers or passive 
processes can change the orbit and attitude of an RSO from one observation to the next, and an active satellite one 
day can change to debris the next. Time is incorporated into SOBO in several ways. First, RSOs are classified by the 
processes in which they participate such as orbits, maneuvers, and communication. Processes incorporate time 
intrinsically, because they unfold over time [20]. All instance level data annotated to SOBO will include properties 
such as the time of observation or maneuver. Second, because object properties linking instances are generally 
defined as being valid at some time, we will capture the time during which a property holds between two instances 
in our datasets. If needed, we will model changes in RSO states as related to states at past or future time periods. The 
W3C (World Wide Web Consortium) Time Ontology [21] already provides a set of classes needed to describe time. 



Provenance is the other key aspect of SOBO, supporting use cases that involve assessing trust in data. Provenance 
will be captured in our data ingestion workflow (section 6), by specifying the inputs and outputs of different 
analyses (Fig. 2). This information is automatically captured for analyses performed in the CyVerse Discovery 
Environment and will be standardized for other data sources. Ontological reasoning can be used to report the chain 
of inputs used to generate data, along with metadata about parameters, methods, and who gathered or analyzed data. 

 
Fig. 2. A simple example showing how SOBO can link processed data such as orbit parameters to a space object via 
the inputs and outputs of processes. Each element in the graph can have metadata associated with it. Green boxes = 

material entities, yellow boxes = processes, blue boxes = information content entities. 

5.2 Example hierarchy 
The left side of Fig. 3 shows a hierarchy for processes under development in the SOBO. Processes include activities 
such as attitude control, orbital maneuvers, and stationkeeping, as well as orbits, communications, and operator 
history. We also include a class for “IADC compliance determination process”, which is not a process in which an 
RSO participates, but rather a process carried out as part of our use-case. This class is needed for generation of 
Bayesian Networks (BN) from the SOBO, discussed briefly in section 6.3. The right side of Fig. 3 shows an 
example of a logical definition specified in the Web Ontology Language (OWL). The class ‘activity determination 
process’ is defined as a process that has as output some data item about an activity state. Logical definitions such as 
this help us to automatically classify data and track provenance. 

 
Fig. 3. Screen shot of the process hierarchy under development in the Space Object Behavior Ontology, from the 

Protégé Ontology editor. 

 
6. BUILDING THE SOBS-KB 

 
6.1 Workflow 

The instantiation of our initial workflow for space domain information fusion is shown in Fig. 4. From left to right: 
Observations of RSOs generate hard and soft data that are stored and processed within the CyVerse analysis 
platform. Soft data is analyzed using methods such as natural language processing (NLP). Sensor data from 
telescopes is fed into EPIC software to produce astrometric and photometric data on RSOs. The astrometric data are 
provided to (a) CAR-MHF to determine the orbits of RSOs, (b) an IMM Estimator to detect and characterize RSO 
orbital maneuvers, and (c) an MMAE to determine RSO attitude profiles. The orbit, attitude, and maneuver data and 
associated uncertainties are annotated and ingested into the SOBS KB, stored as a graph database. 



6.2 Graphs Database 
We will build a graph database (DB) to house the SOBS-KB, which will include all data and metadata needed to 
address our use case. Like a relational database, a graph DB is used to store data that can be retrieved with a query 
language, but it is optimized to store data in the form of interconnected “triples” consisting of subject, predicate and 
object.  The graph format supports queries and inference based on the ontology structure. Customs scripts for data 
ingestion, based on work such as SciGraph [22], are under development. These scripts take tabular data generated as 
part of the data processing workflow  (purple box, Fig. 4) and convert them to triples associated with SOBO terms. 
The graph DB, SOBO, and query interface form the backbone of the SOBS-KB (pink box). 

 
Fig. 4. Instantiation of a proof of concept workflow for fusing hard and soft data to generate figures of merit about 

RSO compliance with IADC guidelines.  Square-cornered boxes represent instances of SOBO classes. 

6.3 Incorporating uncertainty with Bayesian Networks 
Ontologies are by nature poor at representing uncertainty – something either is or is not an instance of a class in 
most OWL reasoners. However, estimates of RSO parameters and states are by nature uncertain, as they are based 
on probabilistic models. To capture the uncertainty associated with RSO state estimates, we combine ontologies 
with BN analysis [23-27]. BNs will be generated automatically from the SOBS-KB using a set of pre-defined 
classes and properties, as in [27]. The BNs are then used to generate distributions of the probability that an RSO is 
in compliance with IADC guidelines. The use of BNs and inference methods is discussed more in [28].  

7.       DISCUSSION 
 
The biggest challenge for most integrative research today is not collecting the data, but making data from a diversity 
of sources work together. Ontologies such as SOBO provide the logical structure for data fusion, but the practical 
tasks of associating data to ontology terms and transforming them into compatible formats without loss of 
information remain prohibitively labor intensive. We are using next generation information management methods to 
demonstrate a semi-automated method of data fusion, which, through future efforts, could be more fully automated. 
Our goal is to build a pipeline that not only processes data in an efficient manor, but also collects and preserves the 
scientific and provenance metadata necessary for data reuse and downstream decision making. We are able to build 
this pipeline rapidly by reusing existing technologies developed and tested in the life sciences community, such as 
CyVerse cyberinfrastructure, the IRODS data and metadata system, workflow managers, and graph databases. Each 
of these technologies has been proven independently, but we are combining them in a novel way to produce a 
system with benefits that have not been previously demonstrated. The combination of probabilistic methods with 
ontologies provides additional benefits in the form of figures of merit that include probability distributions based on 
mechanistic explanations, rather than simple yes/no answers. Our initial implementation focuses on a single use 
case, in order to minimize risk, but the system has broad applicability not only for SSA, but any discipline that 
requires data fusion, semantics, and probabilistic reasoning. 
 
Community members who would like to follow or contribute to SOBO development should use the SOBO GitHub 
repository: https://github.com/SpaceObjectBehavioralScience/sobo. Readers who are interested in following 



progress of the SOBS-KB development may access the SOBS wiki space 
(https://wiki.cyverse.org/wiki/display/SOBS/SOBS+Community+Home+Page) on the CyVerse wiki with a CyVerse 
user account. Sign up for a CyVerse account at https://user.cyverse.org/ and learn how to use the wiki at 
https://wiki.cyverse.org/wiki/display/start/Using+the+CyVerse+Wiki.  
 

8.      NEXT STEPS 
 
Out next steps are to publish a stable version of SOBO, finalize the data analysis and ingestion workflows, and carry 
out BN analyses. With these, we will be able to produce data on IADC compliance for an initial set of RSOs, which 
we can compare to known states to assess the accuracy of our workflow. Future work will include fusing hard data 
with soft data inputs such as gray literature, news reports, and social media to assess other aspects of the IADC 
guidelines such as minimizing debris generation and breakups or the role of operator history in calculating the 
likelihood of compliance.  
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