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abstract: The Holarctic distribution of Babesia microti within small rodents implies an ancient association. A seminal report 
of piroplasms in Alaskan voles suggested to us the possibility that B. microti entered North America within Eurasian microtine 
rodents dispersing through Beringian corridors. To test this hypothesis, we analyzed samples from Alaskan rodents by polymerase 
chain reaction for evidence of infection with B. microti; one-third of the rodents were found to be infected. Sequence analysis 
of the 18S rDNA gene demonstrates that Alaskan B. microti comprises a clade that infects microtines in several sites across 
North America and is distinct from a clade that is zoonotic. 

Human babesiosis caused by Babesia microti was first de- 
scribed from sites along the northeastern United States terminal 
moraine (Spielman et al., 1985) and, later, from Minnesota and 
Wisconsin (Steketee et al., 1985). Until recently, cases of B. 
microti infection have remained limited to these areas, although 
this piroplasm was first described from microtine rodents in 
Portugal (Franca, 1910) and seems widely enzootic in Europe 
(Young, 1970; Krampitz and Baumler, 1978). Literature reports 
suggest, however, that B. microti has a Holarctic distribution, 
with infected rodents found in Russia (Telford et al., 2002), 
Japan (Shiota et al., 1984; Saito-Ito et al., 2000), Taiwan (van 
Peenen et al., 1977), California (Wood, 1962; van Peenan and 
Duncan, 1968), Wyoming (Watkins et al., 1991), Colorado 
(Burkot et al., 2000), Wisconsin/Minnesota (Steketee et al., 
1985), upstate New York (Kirner et al., 1958), and much of 
western Europe. As with certain helminths, such a distribution 
suggests the hypothesis of an origin of the agent within Eurasia 
and introduction into North America via the Bering Land 
Bridge with microtine rodents (Rausch, 1994). An alternative 
hypothesis, introduction into North America from western Eu- 
rope, seems unlikely because no Tertiary biogeographic corri- 
dor has been described between the eastern United States and 
western Europe; alternatively, errant migrant birds may trans- 
port ticks great distances. But, as with a hypothesis of intro- 
duction by human-associated activity (e.g., Norway rats within 
household goods), successful colonization of multiple sites by 
such low-probability events (as introduction by European birds) 
seems unlikely. 

Fay and Rausch (1969) described the presence and distribu- 
tion of a piroplasm in Alaskan voles. This seminal article pro- 
vided details of the life cycle, particularly its transmission by 
Ixodes angustus, which ranges from Siberia into northern Maine 
(Keirans and Clifford, 1978). At the time, the identity of the 
Alaskan agent was tentatively assigned to B. microti because 
of its morphology and association with microtine rodents. The 
development of molecular phylogenetic tools for objectively 
probing the genetic relationships between organisms has pro- 
vided new insight into the history of a wide range of taxa and 
now allows a reexamination of tentative identifications based 

on classical methods. The recent description of Theileria youngi 
from rodents in California (Kjemtrup et al., 2001), which pre- 
viously might have been assigned to B. microti based on mor- 
phology, serves as an example of the utility of DNA-based 
methods as a complement to microscopy and life cycle infor- 
mation. It may be that the paucity of reports of human babe- 
siosis in sites where "Z?. microtV has been reported from ro- 
dents may reflect, in part, misidentification of the parasite. Be- 
cause the presence of B. microti in Alaska would provide piv- 
otal evidence for its introduction via Beringia, it seems logical 
to revisit Alaska and confirm the identity of the piroplasm. Ac- 
cordingly, we sampled rodents and insectivores from 5 major 
faunal zones of Alaska and analyzed them for evidence of B. 
microti infection by polymerase chain reaction (PCR), targeting 
the 18S rDNA. In addition, representative amplification prod- 
ucts were sequenced and analyzed as a first attempt to describe 
the phylogeography of B. microti. 

MATERIALS AND METHODS 

Sample collection 
Small mammals were snap-trapped or live-trapped during a biotic 

inventory through the Beringian Coevolution Project. In addition to 
other tissues, spleens were removed and immediately frozen in liquid 
nitrogen. There were 4 main collection areas: southeast Alaska- Kluk- 
wan, White Pass, Prince of Wales Island and Chichagof Island; Gulf of 
Alaska-Hinchinbrook Island, Montague Island, Cordova, Knight Island, 
Evans Island, and Kodiak; interior Alaska-Cantwell; Seward Peninsula- 
Bendeleben, Kotzebue, Noatak, Nome, and Solomon; and Yukon Delta- 
Yukon Delta. All mammal specimens (skin, skull, and frozen tissues) 
have been deposited in the University of Alaska Museum. 

Polymerase chain reaction 

DNA was extracted from spleens by using the Isoquick blood ex- 
traction kit (Orca Research, Bothell, Washington). Approximately 10 
mg of spleen was homogenized in 100 |jl1 of 4 M guanidium lysis 
solution, and the lysate was extracted according to the manufacturer's 
recommendations. DNA was resuspended in 50 |xl of distilled water. 
Babesia 18S rDNA was amplified by PCR by using primers Babl/Bab4 
(Persing et al., 1992) as described previously. The 238-bp amplification 
products were detected by agarose gel electrophoresis. Random samples 
were amplified using PiroA/PiroB as described previously (Armstrong 
et al., 1998), excised from the gel, purified by spin column (QIAquick; 
QIAGEN, Valencia, California) and sequenced at the University of 
Maine Sequencing Facility (Orono, Maine) for sequence confirmation. 
PCR contamination control measures included physical separation of 
extraction, PCR setup, and electrophoresis; dedicated pipettors; inclu- 
sion of dUTP in PCR reactions; and appropriate negative extraction and 
amplification controls. Restriction polymorphism within the Bab 1/4 tar- 
get was identified that differentiated Alaska-derived Babesia from the 
standard Harvard B. microti strain (GI). Mlul cuts the Alaska-derived 
Babesia once, creating fragments of approximately 130 and 120 bp, but 
it does not cut the Harvard B. microti. Conversely, Xhol cuts the Har- 
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Figure 1 . Areas of sample collection. Closed circles indicate the presence of B. microti in rodents. Open circles indicate no Babesia sp. was 
detected. 

vard B. microti and not the Alaska-derived Babesia. All amplicons were 
subjected to restriction analysis to exclude the possibility of laboratory 
contamination. 

Morphology 

Blood smears were made from fewer than 20% of all animals. Thin 
smears were made from whole anticoagulated blood or from heart blood 
(dead animals), fixed with methanol in the field, and stained with Gi- 
emsa (pH 7.0). Slides from PCR-positive animals were examined by 
bright field microscopy at X 1,000. Randomly selected parasites (30 
from each blood smear, for at least 3 Microtus sp. or Clethrionomys 
sp.) were measured under oil immersion by using a calibrated ocular 
micrometer; size indices (length X width of the parasite/diameter of the 
infected red blood cell) were compared by boxplot (MINITAB version 
11.21, Minitab, Inc., State College, Pennsylvania). 

Phylogenetic analysis 

To obtain a larger portion of the 1 8S rDNA for phylogenetic analysis, 
primers A and B were used as described previously (Kjemtrup et al., 
2000), or primer B was combined with the general piroplasm primer, 
PiroA (Armstrong et al., 1998). A 1,266-bp piece was amplified, se- 
quenced, and aligned with other Babesia sequences from GenBank by 
using Clustal X (Smith et al., 1996) and adjusted by eye with GeneDoc 
(Nicholas and Nicholas, 1997). The maximum likelihood algorithm was 
used for phylogenetic analysis in PAUP (Swofford, 1998). The statis- 
tically best model was selected using Modeltest (Posada and Crandall, 
1998). This model, TVM+I+G (transversional model with an estimated 
proportion of invariant sites and gamma distribution shape parameter), 
was then used in the maximum likelihood analysis. B. odocoilei and B. 
diver gens were used as outgroups. 

GenBank accession numbers 

AB083375 B. microti China, AB05191 B. microti HK strain, 
AY 144692 B. microti Switzerland, AB050732 B. microti Japan-Hob- 
estu, AY 144693 B. microti Russia, AY 144694 B. microti Wisconsin, 
AF231348 B. microti GI strain, AB032434 B. microti Japan-Kobe, 
AB071177 B. microti Munich, AY144687 B. microti AK-Cleth., 
AY9 18951 B. microti AK-Microtus, AY9 18952 B. microti AK Sorex, 
AY 144690 B. microti Maine, AY 144699 B. microti Montana, 
AY144698 Babesia sp. skunk, AY144700 and AF188001 B. annae, 
AY 144702 Babesia sp. fox, AY 144701 Babesia sp. raccoon, AB070506 
Babesia sp. Japan- /. ovatus, AB049999 and M87565 B. rodhaini, 
AF244913 B. leo, AF244912 and AY45707 B.felis, AF245279 T. youn- 
gi, U 16370 B. diver gens, and U 16369 B. odocoilei. 

RESULTS 

In total, 297 rodents or insectivores were analyzed for evi- 
dence of infection, representing collections from every major 
Alaskan faunal zone (Fig. 1). Babesia microti was detected by 
amplification of the Bab 1/4 target in 97 of 297 samples (Table 
I). All amplicons were readily distinguished from the GI strain 
of B. microti by restriction enzyme analysis. Animals that were 
sampled from coastal regions were frequently infected, with the 
exception of the Yukon Delta, whereas those from the central 
portion of the state were not infected. Ixodes angustus were 
noted from animals from Alexander Archipelago and south 
coast regions, whereas no ticks were noted from Cant well. The 
presence of ectoparasites was not recorded from the Seward 
Peninsula and Yukon Delta. 
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Table I. Prevalence of Babesia in Alaskan rodents. 

Site Species      n      % Prevalence      95% CI*      
Gulf of Alaska 

Clethrionomys rutilus 35 54 (37-71) 
Microtus oeconomus 80 60 (48-71) 
Sorex spp. 21 14 (3-36) 
Combined 136 51 (43-60) 

Southeastern Alaska 
Microtus spp. 15 53 (27-79) 
Peromyscus keeni 5 60 (15-95) 
Combined 20 45 (23-68) 

Interior of Alaska 
C. rutilus 79 0 (0-5) 

Yukon Delta 
C. rutilus 26 0 (0-13) 

Seward Peninsula 
C. rutilus 20 35 (15-59) 
M. oeconomus 11 64 (31-89) 
Microtus miurus 5 40 (5-85) 
Combined 36 44 (27-62) 

* CI, confidence interval. 

Piroplasms within blood smears of infected C. rutilus were 
morphologically indistinguishable from B. microti GI strain 
within hamsters or in naturally infected New England Pero- 
myscus leucopus. Size indices of parasites infecting C. rutilus 
and M. oeconomus suggest a host-related effect (Fig. 2). 

We sequenced a 407-bp portion of the 18S rDNA from 6 
selected samples, representing species of Clethrionomys, Mi- 
crotus, and Sorex, and obtained identical sequences (data not 
shown). Because of the difficulty in obtaining large sequences 
from frozen splenic material, only 3 full-length sequences were 
obtained. These full-length sequences are identical within the 
sites of overlap to the other sequences. The Alaskan B. microti 
significantly differs from the GI strain of B. microti, with 97.4% 
sequence similarity (33 bp different) within the 1,266-bp por- 
tion that was sequenced. 

Our phylogenetic analysis yielded the tree shown in Figure 
3. The Alaskan Babesia sp. was identical to that from Maine 
and Montana (group B in Fig. 3). These sequences cluster to- 
gether with B. microti sensu stricto (group A in Fig. 3) to the 
exclusion of B. annae and B. rodhaini but form their own dis- 
tinct clade. Interestingly, a sequence from Munich, Germany 
(unpublished sequence from GenBank AB07177) also falls 
within group B. We conclude that although the Alaskan Babesia 
is closely related to B. microti sensu stricto, it is genotypically 
distinct. 

DISCUSSION 

As reported by Fay and Rausch (1969), B. microti commonly 
infects Alaskan rodents. Transmission is most intense in the 
coastal areas of Alaska, with almost one-half of the animals 
that were tested containing evidence of infection. None of the 
animals tested from Yukon Delta or from inland sites was pos- 
itive. Although it is possible that our sample size was insuffi- 
cient to detect a low prevalence of infection in the Yukon Delta 
or inland sites, the absence of B. microti in rodents from inland 
sites was noted by Fay and Rausch (1969) and attributed to the 

distribution of the vector /. angustus, which seems to be present 
only in the coastal areas of Alaska. The prevalence of gross 
splenomegaly, which has been used as a marker for B. microti 
infection, seems to coincide with the presence of /. angustus 
(Fay and Rausch, 1969). Our survey of small mammals also 
suggested that splenomegaly was more common in coastal sites, 
but quantitative comparisons have not been performed. 

Phylogenetic analysis, from partial 18S rDNA sequences, 
demonstrates that all the parasites detected within Alaskan ro- 
dents and insectivores group within clade B of a putative B. 
microti species complex (Goethert and Telford, 2003), distinct 
from zoonotic clade A of the northeastern United States, or 
Wisconsin, or Japan. The Alaskan parasites are clearly not T. 
youngi, described from Neotoma spp. trapped in northern Cal- 
ifornia (Kjemtrup et al., 2001). Whether the 2.6% divergence 
in the 18S rDNA represents geographic variation within an al- 
lopatric population of a widely distributed species or serves as 
a marker for a unique entity remains speculation (Goethert and 
Telford, 2003). Alaskan B. microti seem to be morphologically 
similar to parasites from sites across the Holarctic and has a 
similar host range (Microtus spp., Clethrionomys spp., and So- 
rex spp.). We have failed in a small number of attempts to pass 
infection by subinoculation of fresh infected blood or splenic 
homogenates to laboratory-reared P. leucopus, hamsters, or 
SCID mice (data not shown), which contrasts with the report 
of Fay and Rausch (1969) of infecting golden hamsters. It is 
possible that the infections we used during these experiments 
represented chronic infections, with predominantly sexual 
forms (gametocytes of Rudzinska et al., 1983), which would be 
poorly transmissible by syringe. The Alaskan parasites seem to 
be maintained by /. angustus (Fay and Rausch, 1969), which 
are classified within a subgenus (Pholeoixodes) different from 
that of the main B. microti vectors for much of the northeastern 
United States (/. dammini subgenus Ixodes), suggesting the pos- 
sibility for vector-related divergence. Additional information 
(including establishing an experimental life cycle in laboratory- 
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Figure 2. Morphology of B. microti infecting Clethrionomys rutilus (A) and Microtus oeconomus (B) Boxplot comparison of size indices 
calculated from representative parasites from each host (C) 2095 is M. oeconomus and 2089 is C. rutilus. 

reared microtines; vector competence studies as well as se- 
quencing of other genes) will be required to determine whether 
Alaskan B. microti deserve description as a new species. 

Parasites seemed to morphologically differ with respect to 
infections in M. oeconomus and C. rutilus, as observed by Fay 
and Rausch (1969). Indeed, these authors suspected the pres- 
ence of 2 different Babesia spp. Sequence data from the 18S 
rDNA gene do not support the hypothesis of 2 species, because 
we only obtained invariant sequences from species of Cleth- 
rionomys, Microtus, and Sorex. This gene, however, is known 
to be highly conserved and may not show divergence between 
species that have recently diverged; thus, we cannot exclude 
the possibility that there may be diverse parasites within Alas- 
kan small mammals. In addition, we directly sequenced from 
PCR amplicons instead of cloning and sequencing them, which 
might have revealed rare copy variants. The differences in par- 
asite size could be simply due to host factors. Babesia spp. are 
well known to be morphologically pleomorphic, depending on 
host or stage of infection. 

The apicomplexan 18S rDNA gene has been demonstrated 
to have paralogous sequences that are differentially expressed 
during different stages of their life cycle (Long and Dawid, 
1980). In Plasmodium spp., for example, the small subunit 
rDNA has many copies with sequence polymorphism (Mc- 
Cutchan et al., 1995). We do not believe that paralogous rDNA 

genes can account for the sequence divergence we find between 
Alaskan B. microti and others from elsewhere in the world, 
because detailed analyses of other Babesia spp. have detected 
only limited sequence polymorphism in their small subunit 
rDNA (Dalrymple, 1990; Reddy et al., 1991). Most of the se- 
quence polymorphism noted was in the noncoding regions. For 
example, among 3 identified ssu rDNA genes in B. bigemina, 
10 nucleotide differences were noted, 8 of which occurred in 
the 5' and 3' flanking regions. Only 2 bases differed in the 
coding regions corresponding to areas of the gene we se- 
quenced. We found 33 bases different between the sequence 
from the Alaskan vole and B. microti GI strain, greatly exceed- 
ing that which would be expected from polymorphism due to 
paralogous sequences. 

We had expected that B. microti from Alaskan rodents would 
comprise genotypes that might be considered basal to that 
which seems to be associated with human infection in the north- 
eastern United States (clade A, Gl-like strains, B. microti s.s.). 
Because Gl-like strains have been reported from the western 
Urals (Telford et al., 2002), Japan (Saito-Ito et al., 2000), and 
Taiwan (Shih et al., 1997), such strains also should be found in 
Alaska if they had been introduced from Eurasia into North 
America through the dispersal of the reservoir or vector via 
Beringia. We did not detect this genotype among the 97 18S 
rDNA amplicons that were examined by restriction analysis. 
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Figure 3. Phylogenetic analysis of Babesia microti-Mke parasites. 
Maximum likelihood analysis was done on a 1 ,266-bp piece of the 1 8S 
rDNA gene. B. odocoilei and B. divergens were used as outgroups. 
Group A consists of B. microti sensu stricto, and group B consists of 
B. microti parasites that are genetically distinct. 

Although this finding might argue against the GI genotype's 
introduction into North America via Beringia, the complexity 
of rodent, parasite, and tick biogeography would suggest that 
additional information is needed. Microtine rodents have been 
present in North America for at least 5 million yr (Repenning, 
1980), diversifying from forms that dispersed from Eurasia 
through Beringia in multiple events (Conroy and Cook, 2000). 
The Nearctic M. pennsylvanicus, a well-known host for B. mi- 
croti (Tyzzer, 1938; Kirner et al., 1958; Spielman, 1976), ap- 
parently expanded its range within the last 50,000 yr to include 
much of North America, perhaps recolonizing southern and 
central Alaska. Parasite populations may have become isolated, 
mixed with others as habitat and animal distributions shifted 
with glacial advances or retreats, or became locally extinct 
(Rausch, 1994). Also, very little is known about the biogeog- 
raphy of the likely vector ticks, other than noting the reported 
wide range of /. angustus from Siberia to Maine. Molecular 
studies of a number of mammalian hosts have uncovered sub- 
stantial phylogeographic structure (Cook et al., 2001; Brunhoff 
et al., 2003), suggesting that further investigation of geographic 
variation is warranted. Accordingly, future studies should con- 
currently analyze parasite, vertebrate host, and invertebrate vec- 
tor population structure to explore the origins of B. microti. 
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