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Abstract.—Multiple unlinked genetic loci often provide a more comprehensive picture of evolutionary history than any
single gene can, but analyzing multigene data presents particular challenges. Differing rates and patterns of nucleotide
substitution, combined with the limited information available in any data set, can make it difficult to specify a model
of evolution. In addition, conflict among loci can be the result of real differences in evolutionary process or of stochastic
variance and errors in reconstruction. We used 6 presumably unlinked nuclear loci to investigate relationships within the
mammalian family Tupaiidae (Scandentia), containing all but one of the extant tupaiid genera. We used a phylogenetic
mixture model to analyze the concatenated data and compared this with results using partitioned models. We found that
more complex models were not necessarily preferred under tests using Bayes factors and that model complexity affected
both tree length and parameter variance. We also compared the results of single-gene and multigene analyses and used
splits networks to analyze the source and degree of conflict among genes. Networks can show specific relationships that
are inconsistent with each other; these conflicting and minority relationships, which are implicitly ignored or collapsed by
traditional consensus methods, can be useful in identifying the underlying causes of topological uncertainty. In our data,
conflict is concentrated around particular relationships, not widespread throughout the tree. This pattern is further clarified
by considering conflict surrounding the root separately from conflict within the ingroup. Uncertainty in rooting may be
because of the apparent evolutionary distance separating these genera and our outgroup, the tupaiid genus Dendrogale.
Unlike a previous mitochondrial study, these nuclear data strongly suggest that the genus Tupaia is not monophyletic
with respect to the monotypic Urogale, even when uncertainty about rooting is taken into account. These data concur with
mitochondrial DNA on other relationships, including the close affinity of Tupaia tana with the enigmatic Tupaia splendidula
and of Tupaia belangeri with Tupaia glis. We also discuss the taxonomic and biogeographic implications of these results.
[Mixture model; partitioned model; Southeast Asia; splits network; treeshrew; Tupaia; Urogale.]

As multilocus genetic data proliferate in systematic
studies, the question of how best to analyze them be-
comes more important than ever. Early analyses almost
always involved simply concatenating data under a sin-
gle model of evolution or optimality criterion. More
recently, it has become easy to partition data—by locus,
codon position, or any other criterion that appeals to
the investigator’s knowledge of the data—and assign
a different model to each partition. However, it can be
difficult to know what the best set of partitions is, and
increasing the number of partitions means that each
contains fewer data from which to estimate para-
meters. An alternative is mixture modeling, in which data
are not partitioned but in which multiple models are
averaged across all sites (Gelman et al. 2004; Pagel and
Meade 2004). Other nonconcatenation methods treat
multiple gene trees as having possibly separate evolu-
tionary histories but use the information in each gene
tree to infer a species tree through consensus methods
(e.g., Holland et al. 2006; Huson and Bryant 2006) or
using the properties of the coalescent (e.g., Degnan and
Salter 2005; Edwards et al. 2007). Because these meth-
ods make different uses of the same data, require dif-
ferent assumptions, and have different strengths and
weaknesses, using them together can allow complemen-
tary interpretations of a given data set. Within a general
framework of Bayesian phylogenetics, we use 3 meth-
ods to examine phylogenetic hypotheses in a poorly
studied mammalian group: mixture modeling, parti-
tioned analyses, and splits-network consensus analysis.

We use this combination of methods to help us deter-
mine where individual methods may be suggesting a
solution with inflated confidence and to identify poten-
tial sources of conflict in our data.

The mammalian order Scandentia (treeshrews) is no-
table both for its close affinity to primates and for the
lack of recent attention that has been paid to its evolu-
tionary history. Treeshrews have long been considered
to be among the closest living relatives of primates and
have been well represented in recent large-scale studies
of mammalian interordinal relationships (e.g., Murphy
et al. 2001; Scally et al. 2001; Reyes et al. 2004; Janecka
et al. 2007). As a result, some species have become im-
portant model organisms in biomedical research (e.g.,
Czeh et al. 2001; Bahr et al. 2003; von Weizsacker et
al. 2004). However, knowledge of the evolutionary his-
tory of this group is woefully incomplete, and the last
thorough revision of treeshrew taxonomy was pub-
lished nearly a century ago (Lyon 1913). In many ways,
treeshrews epitomize the legacy left by Victorian era ty-
pological taxonomy—of the more than 120 species and
subspecies described between 1820 and 1920, only 20
species are currently recognized, although taxonomists
readily acknowledge this as an underestimate (Corbet
and Hill 1992; Helgen 2005). The order is generally
Southeast Asian (Fig. 1), with a distribution almost
perfectly delimited by Wallace’s line (Wallace 1860,
1876) and extending west into India (Helgen 2005).
This region encompasses several major conservation
hot spots (Myers et al. 2000; Sodhi et al. 2004) with high
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biodiversity and endemism, and understanding evo-
lutionary and biogeographic processes in the area is
critical. The broad distribution of treeshrews makes
them excellent candidates for regional-scale research in
Southeast Asia, but questions about the biogeography,
ecology, ecogeography, behavior, and morphological
evolution of this group cannot be answered in a phylo-
genetic context without some knowledge of systematic
relationships within the order.

One contentious question within treeshrews is the
status of Urogale, a monotypic genus endemic to the
Mindanao Faunal Region of the Philippines (Heaney
et al. 1998). Urogale everetti was originally described as a
species of the more widely distributed and speciose
genus Tupaia (Thomas 1892) but was later elevated
(Mearns 1905) on the basis of its unique morphology;
modern evidence for its generic status is weak at best.
DNA–DNA hybridization data (Han et al. 2000) sug-
gest that Urogale is nested within Tupaia, as do some
morphological and morphometric analyses (Steele 1973;
Olson et al. 2004; Sargis 2004). Other analyses have
supported the distinction between Tupaia and Urogale
(Butler 1980; Luckett 1980), although results have been
shown to vary depending on analytical methods and
assumptions in character coding (Olson et al. 2004). Re-
cently, Olson et al. (2005) used mitochondrial DNA to
infer phylogenetic relationships within Scandentia but
found little resolution for most intergeneric relation-
ships in the family Tupaiidae, which includes Tupaia,
Dendrogale, Anathana, and Urogale. Urogale has the east-
ernmost distribution of any treeshrew, and Anathana
has the westernmost distribution (Fig. 1); understand-
ing the geographic basis of diversification in the family
depends on the relationships among these genera. Den-
drogale, from mainland Southeast Asia and Borneo, is the
most basally divergent tupaiid based on 12S data (Olson
et al. 2005). Ptilocercidae, the only other treeshrew fam-
ily, contains the monotypic genus Ptilocercus (Helgen
2005) and has been recovered as a distant sister taxon to
Tupaiidae (Olson et al. 2005; Janecka et al. 2007). Here,
we use additional DNA sequences from 6 nuclear genes
to investigate phylogenetic relationships in Tupaiidae
and to assess the genetic evidence regarding the mono-
phyly of Tupaia with respect to Urogale. Multiple genes
provide a more complete view of evolutionary history
than any single locus can, but multilocus data sets de-
mand particular attention to phylogenetic models and
conflicting signals. We use a combination of Bayesian
systematics and splits-network methods to analyze our
data. We also use a close examination of tree topology
to investigate support for a variety of roots in these
data and discuss the implications of conflict among
genes.

METHODS

Sampling and Laboratory Methods
We included all treeshrew species for which fresh

DNA or tissue was available (see Appendix Table A1 for
voucher information). This includes U. everetti, 9 species

of Tupaia, and Dendrogale murina, which we used as the
outgroup for all analyses (Olson et al. 2005); we lack
Ptilocercus lowii, Dendrogale melanura, Anathana elliotti,
and 6 species of Tupaia. We extracted DNA using the
PureGene protocol for animal tissue (Gentra Systems,
Valencia, CA). We sequenced DNA from 6 nuclear
genes: brain-derived neurotrophic factor (BDNF, 566
bp; coding), the 3′ untranslated region (UTR) of cAMP
responsive element modulator (CREM, 469 bp; noncod-
ing), the 3′ UTR of phospholipase C beta 4 (PLCB4, 334
bp; noncoding), tyrosinase (Tyr, 440 bp; coding), recom-
bination activating gene 2 (RAG2, 450 bp; coding), and
Exon 28 of the von Willebrand factor (vWF, 574 bp; cod-
ing), for a total of 2833 bp. Although we have no way
to be sure where in any given treeshrew genome these
genes fall, they do not appear to be adjacent on the cur-
rent shotgun assembly of the Tupaia belangeri genome
(National Center for Biotechnology Information locus
AAPY01000000), and we therefore have good reason to
believe that none of them are closely linked.

Amplification followed standard polymerase chain
reaction (PCR) methods, in general 35 cycles of denat-
uration, annealing, and extension, with a magnesium
concentration of 1.5–4.0 mM, an annealing temperature
of 50–65◦C, and the primers shown in Table 1. PCR
products were purified with either GeneClean (Bio101,
Vista, CA), following the manufacturer’s instructions,
or Exo/SAP (USB Corp., Cleveland, OH) using one-
quarter of the recommended volume of each reagent.
We sequenced PCR products using 0.5–1.0 µL of ABI
BigDyes v3.1 dye termination chemistry and an ABI
3130xl or 3100 sequencer in the Core Sequencing Fa-
cility of the University of Alaska Fairbanks Institute of
Arctic Biology (Applied Biosystems, Foster City, CA).
We used Sequencher 4.2–4.7 (GeneCodes Corp., Ann
Arbor, MI) to inspect sequence chromatograms and ini-
tially align sequences; alignments were then adjusted
by hand. For protein-coding genes, gaps were placed
to eliminate frameshifts; for all genes, single large gaps
were preferred over multiple small gaps. All sequences
have been deposited in GenBank under accession num-
bers FJ554887–FJ555018, and alignments are available
from TreeBASE (study accession number S2248; matrix
accession number M4268) and from DRYAD.

Phylogenetics
Combined data.—We used BayesPhylogenies (Pagel and
Meade 2004) to implement a mixture model. Partic-
ularly in data sets containing multiple genes or re-
gions with substantial rate or pattern heterogeneity,
a single likelihood model may be inappropriate. In-
deed, recent studies have found that for large data sets,
underpartitioning can result in misleading posterior
probabilities (Brown and Lemmon 2007). Advances in
computer power and Bayesian systematic methods have
made it easy to partition multigene data sets, allowing
genes with different underlying histories, or parts of
genes (such as first, second, and third codon positions),
different models of evolution, and different overall rates
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FIGURE 1. Approximate distribution of treeshrew genera in the family Tupaiidae. Dendrogale is broadly sympatric with Tupaia in northern
Borneo and Indochina. Huxley’s line generally corresponds to the edge of the Asian continental shelf and separates oceanic islands from
landbridge islands in the Philippines. (Based on Lyon 1913, Martin 1990, and Helgen 2005).

of evolution. It would be possible to model our data set
with 6 partitions (1 per gene), 4 partitions (for non-
coding regions and codon positions), or any other con-
ceivable arrangement, and to assign a different model
to each partition. However, the amount of data in any
given partition may be insufficient to resolve a large
number of parameters, making it easy to overparame-
terize systematic models (e.g., Rannala 2002; Sullivan
and Joyce 2005). From a purely practical standpoint,
using a model with many partitions and parameters
can increase the number of Markov chain Monte Carlo
(MCMC) generations required to converge on a station-
ary distribution and to obtain an adequate posterior
sample for each parameter. Speed and performance
can often be improved by eliminating some partitions;
genes or parts of genes may have similar enough char-
acteristics that a single data partition is sufficient to

model more than 1, but there is usually no a priori way
to know what the best arrangement of partitions is.
An alternative to partitioning is mixture modeling, in
which partitions are not specified but in which multiple
sets of model parameters are simultaneously estimated;
this can allow unsuspected shared characteristics of the
data to be modeled together (Pagel and Meade 2004).
Mixture models allow multiple data patterns to have
different model parameters, without the need for defin-
ing data partitions; the likelihood for each site is the
sum across all models, weighted by their fit. This ap-
proach often reduces the number of parameters over
a highly partitioned model, and it can illuminate pat-
terns of variation or similarity in the data that do not
correspond to genes, codons, or other a priori partitions.

We therefore tested possible phylogenetic mixture
models in BayesPhylogenies, using 1–6, 10, 15, and 20

TABLE 1. Amplification and sequencing primers

Gene and direction Sequence (5′ – 3′) Source

BDNF-F1 CATCCTTTTCCTTACTATGGTT Murphy et al. (2001)
BDNF-R1 TTCCAGTGCCTTTTGTCTATG Murphy et al. (2001)
CREM-F3 AGGAACTCAAGGCCCTCAAA Murphy et al. (2001)
CREM-R3 GGGAGGACAAATGTCTTTCAA Murphy et al. (2001)
PLCB4-F1 GTGAAATTGGAAGCCGAGAT Murphy et al. (2001)
PLCB4-R1 CACCAAGCTCATTTACTTGTGA Murphy et al. (2001)
Tyr-F1 TCCCTGTGGCCAGCTTTCAG This study
Tyr-R1 GCTTCATGGGCAAAATCAAT This study
Tyr-F2 GGGGTTCCTGTCAGGACGTC This study
Tyr-R2 CAGAAAACCTGGTGCTTCATG This study
RAG2-F1 ACACCAAACAATGAGCTTTC This study
RAG2-R1 CACTGGAGACAGAGATTCCT This study
vWF-A (F) CTGTGATGGTGTCAACCTCACCTGTGAAGCCTG Porter et al. (1996)
vWF-L3 (R) TTGTTCTCAGGGGCCTGCTTCTC This study

Abbreviations: F= forward; R= reverse.



260 SYSTEMATIC BIOLOGY VOL. 58

independent GTR rate matrices, or patterns, which we
notate “Q” following Pagel and Meade (2004), with
and without gamma rate variation (notated “Γ”) and
separate base frequencies (“π”). Rate matrices, gamma
variation, and base-frequency variation interact and
can sometimes compensate for each other—adding a
rate matrix, for example, can allow “fast” sites an over-
all faster rate without explicit gamma variation—and
it is possible for quite different parameterizations to
fit the data similarly. We ran each of these 34 models
for 2 runs of 5 million generations with a burn-in of
100 000 generations. We then used the harmonic mean
of the model log likelihoods (post-burn-in) to approx-
imate the marginal likelihood of the model (Raftery
1996) and compared model likelihoods using Bayes fac-
tors (Kass and Raftery 1995; Raftery 1996) to choose
a model that balanced model fit with parameteriza-
tion. We used the chosen model in 2 independent runs,
1 of 51 million generations and 1 of 26 million genera-
tions, each with 3 heated chains, and eliminated the first
million generations as burn-in. We used MrBayes 3.1.2
(Ronquist and Huelsenbeck 2003) to compute consensus
trees and bipartition frequencies from post-burn-in tree
sets.

To compare mixture modeling with partitioned ana-
lyses, we also analyzed the combined data in MrBayes.
We used 5 partitioning schemes: unpartitioned (1 to-
tal “partition”); partitioned into coding and noncoding
regions (2 partitions); partitioned by codon position,
plus 1 partition for noncoding regions (4 partitions);
partitioned by gene (6 partitions); and partitioned by
gene and codon position (14 partitions). In all cases,
for the best comparison with BayesPhylogenies, we as-
signed each partition a separate GTR rate matrix and
separate base frequencies but included a single gamma
parameter linked across all partitions. This makes, for
example, the 6-partition model partitioned by gene as
similar as possible to a 6Q + Γ + πmodel in BayesPhylo-
genies. In all partitioned analyses, we assigned the rate
prior (“ratepr”) a Dirichlet(1,. . . ,1) prior distribution,
allowing relative rates to vary among partitions. We ran
2 runs of 20 million generations, sampling every 1000,
using 4 chains with the default heating scheme.

For both MrBayes and BayesPhylogenies, we assessed
convergence, mixing, and sampling using R 2.4.1 and
2.5.1 (R Development Core Team 2004). Our determina-
tion of convergence included comparing log-likelihood
series for the 2 runs for each model, comparing means
and distributions of other model parameters for the 2
runs for each model, and checking the variance of each
parameter. Likelihoods and parameters were consid-
ered to have converged if the 2 runs appeared to be
sampling the same stationary distribution. In 1 case
(in BayesPhylogenies) in which 1 run had clearly got-
ten “stuck” in a different stationary distribution, with
a poorer likelihood, we discarded and repeated a run.
We also checked the effective sample size of parame-
ters, which takes autocorrelation between successive
samples into account and which can help indicate when
1 or more parameters are not mixing well (this can

be particularly problematic with complex, highly pa-
rameterized models). When comparing the variance of
models, we rescaled BayesPhylogenies rate matrix sam-
ples as proportions of the rate sum so that variances are
roughly on the same scale as those from MrBayes. Cal-
culations and manipulations in R used our own scripts
or functions in the packages MCMCpack (Martin and
Quinn 2007) and coda (Plummer et al. 2006).

Individual genes.—Phylogenies based on different loci
can vary both because of stochastic differences (the
same evolutionary history can result in different trees)
or because of evolutionary differences (different loci
may have different histories). In either case, a multigene
data set can contain evolutionary information that is not
visible in a standard consensus tree, especially one lim-
ited to a strictly bifurcating branching pattern. Similarly,
conflicting relationships can be present in trees from a
single locus if more than 1 phylogenetic pattern is sup-
ported by the data. The strength of minority signals
can be important in evaluating support for phyloge-
netic hypotheses. In order to investigate these minority
signals and check the potential effect of individual-
gene histories and unique trees, we constructed trees
for each individual gene and computed bipartition fre-
quencies in MrBayes 3.1.2 (Ronquist and Huelsenbeck
2003; Altekar et al. 2004). We chose models for each gene
using the Akaike Information Criterion by scoring each
model on a neighbor-joining tree; the models chosen
were HKY + I (BDNF, Tyr, and RAG2), HKY + G (CREM
and vWF), and GTR (PLCB4). All runs used the default
4-chain heating scheme for 20 million generations with
a 1 million generation burn-in. Convergence and sam-
pling were assessed in R using the same methods as for
the combined analyses.

Network methods can help identify conflict among
multiple genes or among signals in multiple trees
when support is ambiguous (e.g., Holland et al. 2004;
Gadagkar et al. 2005; Huson and Bryant 2006; Gauthier
and Lapointe 2007). Bayesian methods are well suited
for the investigation of topological conflict among many
trees, as they are fundamentally based on finding sets
of trees rather than a single optimal tree. We used R (R
Development Core Team 2004) to calculate the mean
frequency of all bipartitions (splits) present in the 6 tree
sets, based on the summary of bipartitions calculated by
MrBayes. We then used SplitsTree (Huson and Bryant
2006) to create a network of all bipartitions with a mean
frequency greater than 10%, some of which conflict with
each other. This allowed us to see, simultaneously, bi-
partitions with low to medium support from several
genes or high support from one, not just the partitions
supported simultaneously by all the genes. This is a
consensus method; we are making a network directly
from taxon bipartitions—essentially from trees—and
not from the sequence data. Our approach is slightly
different than standard consensus network methods
(e.g., Holland et al. 2004), as we select bipartitions by
their mean frequency in a Markov chain–derived tree set
rather than combining those that were present in a set
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of single trees found under some optimality criterion.
It is equivalent to constructing a splits network directly
from the Bayesian tree set, as suggested by Holland et al.
(2006), but with a large number of trees, we found net-
work construction to be substantially faster using our
approach. In order to separate conflict involving only in-
group taxa from that involving root placement, we also
excluded the outgroup, D. murina, and created a second
network. Both approaches enabled us to identify sources
of conflict and places where individual genes “disagree”
with each other and with the combined data topology.

In order to calculate the posterior probability of spe-
cific taxon bipartitions and tripartitions, including root
placements, we used PAUP*4.0b10 (Swofford 2002) to
define a constraint tree based on each partition and to
filter posterior tree sets against these constraint trees,
generating a list of partitions and their frequencies. To
determine the frequency of bipartitions without the root,
we pruned the outgroup from sets of trees before defin-
ing constraints or filtering. We then summarized these
partition frequencies in R. The NEXUS network files are
available from DRYAD.

RESULTS

Model Choice
We found that more complex, parameter-rich models

did not always outperform less complex models ac-
cording to Bayes factor model comparison. The single-
pattern model with no rate variation had by far the
worst marginal log likelihood, but most other models
had similar scores (Fig. 2a). For each number of patterns
(Q), the model with gamma rate variation (Γ ) and inde-
pendent base frequencies (π) had the best marginal like-
lihood. The maximum marginal log likelihood belonged
to the 5Q + Γ +πmodel, but this model was only slightly
better than several other models. The log-Bayes factor
of this model compared with each of the 6Q + Γ + π,
4Q + Γ + π, 3Q + Γ + π, and 2Q + Γ + π models was
between 0 and 1, implying that the support for the
best model over these was “barely worth mentioning”
(Raftery 1996, p. 165). Our results suggest that although
1 rate matrix, even with among-site rate variation, is
insufficient for these data, adding parameters beyond
an intermediate model is unnecessary and sometimes
detrimental. With many more patterns, model likeli-
hoods began to decline, especially for non–Γ+πmodels.
These models also had the worst sampling and highest
levels of autocorrelation among parameters; the effec-
tive sample size of likelihoods in the 20Q model was
only 107 in the total sample of 9800 (compared with
more than 1000 for most models). Overall, more highly
parameterized models mixed more poorly, ran more
slowly, and resulted in higher parameter variances
(Fig. 2b). For our final tree search, we therefore chose
the 2Q + Γ + π model, the simplest of the models with
nearly identical support to the best model, giving us a
compromise between model fit and number of param-
eters. The average variance in rate parameters of this
model was also somewhat less than that for models

with slightly higher marginal likelihoods (Fig. 2b). The
final effective sample size was at least 100 per run and
450 total for every parameter. The 2 patterns had mean
weights of 0.54 (95% highest posterior density interval
[HPDI] 0.26–0.87) and 0.46 (95% HPDI 0.13–0.74), in-
dicating that both are contributing substantially to the
final weighted likelihood score.

In MrBayes, marginal likelihoods increased sharply
with the number of parameters (Fig. 2a), as did para-
meter variance (Fig. 2b), and no leveling off was appar-
ent in either. Model likelihoods were generally higher
than those for mixture models in BayesPhylogenies.

Combined Data
Topology.—The 50% consensus topology was identical
in BayesPhylogenies and all MrBayes analyses. The
combined data strongly support a single topology for
the genera Tupaia and Urogale (Fig. 3). Of the taxa in-
cluded here, sister relationships between Tupaia glis and
T. belangeri and between Tupaia tana and Tupaia splen-
didula were strongly supported in all analyses. Likewise,
the grouping of Tupaia longipes with T. glis/T. belangeri
and Tupaia minor with T. splendidula/T. tana was sup-
ported. Relationships within the ingroup were gener-
ally well supported, with posterior probabilities greater
than or equal to 95% for all but 2 branches shown in
Figure 3. One exception is the support for the mono-
phyly of T. belangeri, which has a posterior probability
of 91%; the deepest split within T. belangeri is nearly as
deep as the divergence between T. belangeri and T. glis.
The other is a 66% posterior probability within T. tana;
other intraspecific relationships in T. tana and T. splen-
didula had support less than 50% and are shown as mul-
tifurcations in Figure 3. The 90% posterior probability
for the node subtending Urogale through T. tana reflects
the location of the outgroup rather than uncertainty
about relationships among ingroup taxa.

The combined nuclear genes also support a single root
position with moderate posterior probability (89.9%),
separating the T. belangeri/T. glis/T. longipes clade from
the other included species. There were 13 other root po-
sitions in the posterior tree set (Fig. 3). Only 1 other root,
on the internal branch separating U. everetti and Tupaia
gracilis, was found in more than 5% of trees; 3 roots
had probabilities between 1% and 5%, and the rest were
< 1%. The posterior probability of rooting on the branch
to Urogale, making Tupaia monophyletic, was only 1.7%.
Thus, the total posterior probability for Urogale nested
within Tupaia, with the root at any position, is 98.3%.

Tree length.—With the most comparable model (using
gamma variation and separate base frequency matri-
ces), BayesPhylogenies inferred consistently longer total
tree lengths than MrBayes (Fig. 4). Trees in MrBayes got
slightly longer as the number of partitions increased,
then much longer under our final partitioning scheme
(with 14 separate partitions). Total tree lengths in the
other 4 MrBayes analyses were very consistent but
always slightly longer than comparable Γ + π models
in BayesPhylogenies. There is no clear trend in total tree
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FIGURE 2. a) Marginal likelihoods for each model tested in BayesPhylogenies and MrBayes. Γ = gamma-distributed rate variation; π =
different base frequencies for each partition. The scale on the left shows the regions of Bayes factor support for the model with the highest
marginal likelihood, according to the scale suggested by Raftery (1996). b) Mean variance of rate matrix parameters for each model tested.
Rate matrices in BayesPhylogenies were rescaled as a proportion of the rate sum before calculating the variance, making the variance more
comparable with that in MrBayes. For BayesPhylogenies, the solid gray line shows the variance obtained by generating data randomly under
the rate matrix prior.

length in BayesPhylogenies as the number of patterns
increases and no big increase with highly parameterized
models.

Individual Genes
Individual genes showed more topological varia-

tion and, overall, less support for most groupings than

FIGURE 3. Majority-rule consensus tree for the combined 6-gene data set. Numbers below each branch show posterior probability in the
combined-data analysis. Gray circles and corresponding bold, italicized numbers show the root positions found in the combined data analysis
and their posterior probabilities (3 positions incompatible with the majority-rule tree are not shown; each has posterior probability less than
0.01). Bar graphs above each branch show the posterior probability in the 6 single-gene analyses; bars are always, from left to right, BDNF,
CREM, PLCB4, Tyr, RAG2, vWF. The branch to the outgroup (dashed line) is one-tenth the scale of the rest of the tree.
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the combined data. In several cases, individual-gene
consensus trees have strong support for 1 or a few
relationships (Fig. 3 and Table 2) but little or no sup-
port for those elsewhere in the tree, which collapse
into multifurcations. Some such well-supported rela-
tionships are present in the resolved combined data
tree, but others are not. Conversely, some relationships
in the combined data tree have high support from all
6 genes (e.g., the monophyly of our 2 Tupaia dorsalis
samples), but some are supported by only 1 or 2 genes
(e.g., the monophyly of our 5 individuals of T. belangeri).
The single-gene trees did have substantial variability
in root position—more than in the tree set from the
combined data—and no single gene had strong support
for any root (Table 3). The maximum root probabil-
ities for individual genes ranged from 7.2% (BDNF)
to 32.2% (RAG2), and 24 different root positions had
posterior probabilities of at least 5% in at least 1 in-
dividual gene tree. The majority root in the combined
analysis was not the most common root in any indi-
vidual gene tree; its posterior probability ranged from
0.0% to 21.1% (Table 3). However, as with the com-
bined analysis, support for a root on U. everetti was
not found in any of the individual gene trees. Individ-
ual gene posterior probabilities for this root ranged from
0.6% (vWF) to 8.3% (Tyr) (mean: 5.1%; median: 5.7%).

In order to visualize the areas in which the 6 genes
agreed and disagreed about topology, we created a splits
network of all the bipartitions (splits) with a mean fre-
quency of at least 10% (Fig. 5). In this type of network,
any given split is represented by a set of 1 or more par-
allel lines; conflicting splits are perpendicular to each
other. The length of a split is not a measure of evolu-

FIGURE 4. Boxplots showing tree length distributions for com-
parable models tested in MrBayes and BayesPhylogenies (all with
gamma-distributed rate variation [Γ ] and separate base-frequency dis-
tributions [π]). Each MrBayes partitioned model is overlapped slightly
with the mixture model with the same or closest number of matrices.
The symbol “*” indicates that extreme high values of the MrBayes 14-
partition distribution have been omitted for clarity.

tionary distance, as is usual for branch lengths in trees,
but the amount of support for that split, in this case
the mean posterior probability in the 6 tree sets. The
number of relationships in conflict in a given area of
the network is thus the number of perpendicular splits.
A 2-dimensional rectangle suggests 2 conflicting rela-
tionships, whereas a 3-dimensional rectangular prism
suggests 3; more complex structures are formed from
more relationships. The shape of the rectangle or prism
indicates relative support for conflicting relationships:
the more even the edges, the more even the support.

The overall topology of our network (Fig. 5a) is sim-
ilar to the consensus combined data tree. However, the
network shows the conflicting signals present within
and among data sets, which the consensus tree does not.
There are several regions of conflict in these data. First,
vWF and PLCB4 have moderate support for a clade con-
taining T. tana, T. splendidula, and Tupaia palawanensis,
conflicting with the clade uniting T. tana, T. splendidula,
and T. minor that was supported by the other 4 genes
and the combined analysis. In the network, the presence
of conflict between these 2 topologies, and the relative
support for each, is shown by the set of rectangular
prisms connecting T. minor and T. palawanensis. This is
even clearer when the outgroup is removed from the
network (Fig. 5b); without the additional uncertainty
about the root, these conflicting splits can be shown
with a single rectangle.

Second, the complexity of the network around Uro-
gale, T. gracilis, and T. dorsalis shows that many different
topologies are in conflict with each other in this part
of the tree. Again, this is clearest when Dendrogale is
excluded. Without the outgroup, several conflicting
relationships are present. There is some support for bi-
partitions of each of these 3 taxa with T. belangeri, T. glis,
and T. longipes, and for either T. dorsalis or T. gracilis with
T. tana, T. splendidula, T. minor, and T. palawanensis. There
is also some support for a bipartition of T. gracilis and U.
everetti. Because of support from 1 gene (CREM), there is
also a visible partition of T. dorsalis with 2 individuals of
T. belangeri. When the outgroup is included, the number
of relationships present increases sharply, reflecting the
lukewarm support these individual gene trees have for
any root position.

The other clear areas of conflict involve relationships
within species (T. tana, T. splendidula, T. belangeri) and
within the T. glis/T. belangeri clade. Each of these species
was recovered as monophyletic in the combined ana-
lysis, and this is not contradicted by individual genes
for T. tana and T. splendidula. However, vWF groups 1 in-
dividual of T. belangeri with T. glis, and only 2 genes of
these 6 strongly supported the monophyly of T. belangeri
(Table 2).

DISCUSSION

Mixture Modeling and Partition Modeling
Mixture and partitioned models offer fundamentally

different ways of approaching multilocus data and of
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TABLE 2. Bipartition posterior probabilities

All BDNF CREM PLCB4 Tyr RAG2 vWF Mean
Tupaia dorsalis monophyly 100.0 100.0 100.0 96.9 99.8 99.0 100.0 99.3
Tupaia belangeri monophyly 91.3 0.8 0.2 9.6 16.2 98.4 11.7 22.8
Tupaia glis monophyly 100.0 7.2 90.4 16.0 18.0 33.7 73.5 39.8
T. glis + 1 T. belangeri 5.0 1.8 9.8 6.0 15.7 0.2 52.1 14.3
T. belangeri + T. glis 100.0 4.4 0.4 9.5 62.9 98.1 98.4 45.6
T. belangeri + T. glis + Tupaia longipes 100.0 47.5 1.4 75.2 93.4 86.5 100.0 67.3
T. belangeri + T. glis + T. longipes + Urogale 98.0 99.7 0.1 96.2 29.1 15.6 1.2 40.3
T. belangeri + T. glis + T. longipes + Urogale + Tupaia gracilis 99.0 100.0 0.1 32.0 94.9 15.7 51.8 35.2
Tupaia tana monophyly 100.0 100.0 2.2 1.6 1.4 4.5 100.0 35.0
Tupaia splendidula monophyly 100.0 15.1 3.0 2.5 20.3 83.6 100.0 37.4
T. tana + T. splendidula 100.0 44.6 100.0 54.9 2.5 10.2 100.0 52.0
T. tana + T. splendidula + Tupaia minor + Tupaia palawanensis 100.0 13.6 16.5 94.7 92.7 96.9 94.5 68.1
T. tana + T. splendidula + T. minor 100.0 44.5 98.5 15.1 7.2 92.0 12.6 45.0
* T. tana + T. splendidula + T. palawanensis 0.0 6.9 0.2 68.4 11.8 0.8 75.5 27.3
* Urogale + T. gracilis 1.7 0.0 20.9 0.7 29.1 34.2 21.7 17.8
* T. gracilis + T. dorsalis 0.2 16.5 0.2 31.5 0.8 5.5 1.1 9.3
* Urogale + T. dorsalis 0.0 0.0 0.1 0.6 2.4 17.8 20.8 7.0
* Urogale + T. gracilis + T. palawanensis 0.0 0.0 25.0 0.0 0.0 0.2 0.1 4.2
* T. belangeri + T. glis + T. longipes + Urogale + T. dorsalis 1.0 16.0 16.6 32.1 1.1 40.1 0.6 17.7
* T. belangeri + T. glis + T. longipes + T. dorsalis 0.0 0.0 69.2 0.7 0.8 30.6 3.6 17.5
* T. belangeri + T. glis + T. dorsalis 0.0 0.0 8.4 0.0 0.0 2.3 0.0 1.8
* T. belangeri + T. glis + T. longipes + T. gracilis 0.3 0.0 0.1 0.8 37.5 8.2 73.5 20.0

Notes: Posterior probabilities for selected taxon bipartitions in unrooted trees in the combined analysis (“all”) and the 6 individual-gene analy-
ses, and the mean probability for the individual-gene analyses, after pruning the outgroup are shown. The symbol “*” designates bipartitions
not consistent with the majority-rule combined analysis tree. Entries in boldface indicate the example bipartitions labeled in Figure 5b.

handling heterogeneous evolutionary processes. We
found that model likelihoods were generally higher for
partitioned models. This may reflect several of the ways
in which these classes of model differ. First, in a mix-
ture model, the likelihood at each site is determined
by a weighted sum of likelihoods under each pattern.
This will never be higher than the likelihood under the
best-fitting pattern and may be substantially lower if
some patterns fit that site poorly but have a relatively
high weight. Second, the pattern weights are the same
for all sites. This means that a pattern that fits a few
sites well but the rest very poorly will have a relatively
low weight and will not contribute much to the total
likelihood, even at the sites that it fits, and those sites
may have a poor overall likelihood.

It is misleading, although tempting, to think of mix-
ture models as dynamically assigning sites to partitions.
Sites under a mixture model do not belong to 1 parti-
tion; their likelihoods are averaged across all patterns. It
is important to note that all sites sharing a single unique

pattern in the data (e.g. “AAT” or “CCC” for 3 taxa) will
have the same likelihood under a mixture model; in a
partitioned model, the likelihood of a given site depends
on which partition it is in. Thus, in a mixture model, all
sites with a given site pattern will have their highest
likelihood under the same pattern. This makes it very
unlikely for sets of sites matching genes, codon posi-
tions, or other common a priori partitions to have their
highest likelihood under 1 pattern, unless their evolu-
tion has been so heterogeneous that even site patterns
are not shared across those partitions. In our data set,
the dominant site patterns are the invariant ones—all A,
all C, all G, and all T. These sites, unsurprisingly, are dis-
tributed throughout all the typical a priori partitions; it
would be unusual for an entire gene or codon partition,
for example, to have no invariant sites. As a result, sites
that have their highest likelihoods under Patterns 1 and
2 in our analysis are not grouped in any clear way. Most
of the 267 site patterns present here are found across the
various likely a priori partitions, making it impossible

TABLE 3. Root posterior probabilities

All BDNF CREM PLCB4 Tyr RAG2 vWF
Tupaia belangeri + Tupaia glis + Tupaia longipes 89.9 3.4 0.0 4.5 21.1 2.3 12.6
T. belangeri + T. glis + T. longipes + Urogale 5.4 6.0 0.0 16.5 2.4 0.4 0.0
Urogale 1.7 5.5 8.0 5.9 8.3 2.2 0.6
T. belangeri + T. glis + T. longipes + Urogale + Tupaia gracilis 1.2 0.0 0.0 3.8 22.2 0.5 0.6
Tupaia tana + Tupaia splendidula + Tupaia minor + Tupaia palawanensis 1.2 0.0 1.3 12.4 4.1 32.2 1.6
T. palawanensis 0.04 1.1 9.4 10.6 0.3 31.1 1.0
T. minor + T. splendidula + T. tana 0.007 0.1 22.4 0.1 0.0 9.6 0.0
T. longipes 0.1 7.2 2.1 0.2 8.5 0.9 3.5
Monophyletic T. tana 0.0 0.6 0.0 0.0 0.0 0.0 20.2
Anywhere within T. tana 0.0 0.2 0.0 0.5 0.9 1.0 47.8
Anywhere within or on T. belangeri/ T. glis 0.016 53.8 13.0 2.9 9.7 0.5 2.9

Notes: Posterior probabilities for selected root positions in the combined analysis (“all”) and the 6 individual-gene analyses are shown. The
maximum probability for each data set is in boldface. Most tripartitions are specified by the taxa on one side of the tripartition. In the last 2 lines,
probabilities have been combined for roots within T. tana or within the T. belangeri/T. glis species group.
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FIGURE 5. Splits network of all bipartitions with a mean frequency of 10% or greater in the 6 individual-gene Bayesian analyses. The length
of a split is proportional to its mean frequency (not the number of mutations). a) Full data set. b) Central region of the network after excluding
Dendrogale (the rest of the network is identical). As an example, 2 conflicting splits are labeled with their mean posterior probabilities; these
correspond to entries in boldface in Table 2.

for the identities of sites with their highest likelihood
under a single pattern to conform to those partitions. It
is also worth noting that in a mixture model, all the data
are being used to estimate all the parameters. This is
in stark contrast to partitioned models, in which differ-
ent portions of the data, and different amounts of data,
are used for each set of parameters. This approach may
increase the variance of some parameter estimates but
also keeps mixture modeling from suffering from one of
the problems of partitioned models—partitions without
sufficient variable data may be unable to estimate even
a few parameters with precision.

Bayes Factors and Model Selection
We used Bayes factors to compare models. Bayes fac-

tors are not a hypothesis test and do not result in a
P value for rejection of 1 model or another, but they
can provide guidance in choosing among complex and
nonnested models. Unlike many other popular model
choice criteria, Bayes factors, which use an estimate of
the total (marginal) likelihood of a model rather than
the likelihood at a single combination of parameters,
include information from across a wide range of param-
eter values. Because the marginal likelihood depends on
both the data and the prior distribution for each param-
eter, Bayes factor tests include an inherent penalty for
overparameterization. Each additional parameter adds
a prior, and each additional prior (which is, at any given
point, a number much smaller than 1) tends to reduce
the total probability, possibly offsetting the gain in like-
lihood from better model fit. This is also evident in the

behavior of MCMC samples from more complex mod-
els. As the number of parameters in a model goes up,
the variance of samples along an MCMC run often in-
creases, and the marginal likelihood can decrease—even
for nested models, in which the maximum likelihood
will always be better for more complex models. It is
important to note that because this inherent penalty is
related to variance, “uninformative” or diffuse priors
provide more of a penalty than more focused ones. Cho-
ice of prior, not just the fit of the models to the data, can
therefore affect the results of a Bayes factor comparison.

Phylogenetic use of Bayes factors has in general fo-
cused on the harmonic mean as an estimator of model
likelihood, as we do here. The harmonic mean estima-
tor is known to be unstable and to often have an infi-
nite variance (e.g. Raftery 1996). This is manifested by
occasional replicate runs having very different model
likelihoods, even though by all typical convergence
diagnostics they are sampling the same stationary
distribution—the strong effect of rare low values on
harmonic means makes the estimate sharply differ-
ent. It is perfectly acceptable, and even desirable, for
an MCMC chain to find an occasional low likelihood
value, as chains that are mixing well should encounter
such values frequently and accept them occasionally.
Interestingly, we found that the difference in model
likelihood between multiple runs was indeed related
to how well the chain mixed. Poorly mixing chains,
with high autocorrelation between successive samples,
tend to result in nearly identical model likelihoods for
multiple runs. Chains that mixed better had a greater
chance of encountering an occasional low likelihood,
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which could have a big effect on the chain’s marginal
likelihood. However, this may cause the marginal likeli-
hood of a poorly mixing model to be overestimated (if it
is finding low values more rarely than it should be) and
that of a well-mixing model to be underestimated (if it
happens to find low values more frequently than their
true probability). In a Bayes factor test, this could effec-
tively penalize a model for mixing well, which would
be undesirable.

We found that parameter variance increased with
model complexity for both partitioned and mixture
models. In the former, the mean variance of rate matrix
parameters increased sharply as the number of parti-
tions increased and did not level off. In the mixture
models, the mean variance rapidly leveled off and ap-
peared to be converging on the variance generated by
randomly choosing values from the prior distribution.
In both cases, it seems that adding parameters, while
increasing model fit, does tend to increase variance as
well. However, a Bayes factor test of mixture models
suggests that these 2 attributes are best balanced by an
intermediate model, whereas a similar test of the par-
titioned models we used would choose the most com-
plex model. Interestingly, the most complex partitioned
model also resulted in extremely long trees and a broad
distribution of tree length (Fig. 4), despite its much
higher harmonic mean likelihood. Highly partitioned
models are known to cause problems estimating tree
length under some conditions (e.g. Marshall et al. 2006),
and in our case, the jump in tree length may reflect in-
adequate adjustment of branch length priors or (as with
the other high parameter variances) the increasing effect
of the priors on posterior branch length estimates.

Urogale everetti versus Tupaia
For the taxon sample included here, the question of

the monophyly of Tupaia with respect to Urogale is solely
one of rooting: if the root falls on Urogale, Tupaia is recon-
structed as monophyletic; if the root falls anywhere else,
it is not. We found little evidence for the monophyly
of Tupaia with respect to Urogale either in the combined
analysis or in individual gene trees. The combined ana-
lysis strongly supports Urogale as nested within Tupaia,
with posterior probability of 89.9% for the majority root
position (Fig. 3) and 98.3% for the paraphyly of Tupaia;
the posterior probability of a sister relationship between
Tupaia and Urogale is only 1.7%. Support for this sister re-
lationship varies among individual genes; this topology
is occasionally recovered in some trees but was never
the highest probability root and never had a posterior
probability greater than 8.3%. Thus, these nuclear data
reject the monophyly of Tupaia with respect to Urogale.

We are by no means the first to question the generic
status of Urogale. Indeed, U. everetti was initially de-
scribed as Tupaia everetti (Thomas 1892). Urogale was dis-
tinguished from Tupaia due to its unique morphology by
E. A. Mearns in 1905, when he described Urogale cylin-
drura (which was later synonymized with U. everetti).
Lyon (1913) upheld the status of Urogale in his seminal

monograph on the order Scandentia, which remains
the most thorough work on the taxonomy of the order.
There is no question that Urogale is morphologically dis-
tinct from all treeshrews in the genus Tupaia, but autapo-
morphic morphological features cannot provide any
evidence for its phylogenetic position. Han et al. (2000)
concluded that Urogale was nested within Tupaia us-
ing DNA–DNA hybridization and some morphometric
data, as did Sargis (2004) with postcranial evidence and
Olson et al. (2004) in their reanalysis of Steele’s (1973)
morphological data. In a previous attempt with DNA
sequence data, Olson et al. (2005) found that the mito-
chondrial gene encoding 12S ribosomal RNA (rRNA)
did not resolve the position of Urogale. Their optimal
maximum likelihood tree showed a polytomy of Uro-
gale, T. gracilis, and the remainder of Tupaia, with poor
support for most basal nodes in the Urogale/Tupaia radia-
tion, leaving the monophyly of Tupaia an open question.
However, we consider it significant that no phylogenetic
study with good taxon sampling has recovered Tupaia
as a monophyletic genus with strong support; neither
genetic nor morphological data, analyzed with mod-
ern phylogenetic methods, supports the monophyly of
the genus. We provisionally recommend synonymiz-
ing Urogale with Tupaia, although we acknowledge that
broader taxon and character sampling could change our
understanding of the history of this group.

Urogale is geographically as well as morphologically
unique among treeshrews (Fig. 1). Its distribution is the
farthest east in the group, and it is the only treeshrew
species found on oceanic islands in the Philippines. It
is thus the only treeshrew found east of Huxley’s Line
(Huxley 1868), which separates the oceanic region of the
Philippines from the landbridge islands of the Sunda
Shelf, including the Palawan island group. Urogale is
endemic to the Mindanao Faunal Region of the south-
ern Philippines, where it has been recorded only from
the islands of Mindanao, Dinagat, and Siargao—that is,
Mindanao and 2 small islands very close to Mindanao
(Heaney et al. 1998; Helgen 2005). Several Philippine
mammals have similar distributions, although many
Mindanao Faunal Region endemics are somewhat more
widespread (Heaney et al. 1998). Urogale’s limited distri-
bution suggests that it disperses poorly, that it has been
extirpated in part of a previously more widespread
range, or that it reached the Philippines only recently
and has not yet had time to expand its distribution. On
the other hand, its presence in the Philippines presum-
ably reflects overwater dispersal, as these islands have
never been connected to the Sunda Shelf (including
Borneo) or to mainland Southeast Asia (Heaney 1985,
1986). The only other treeshrew whose current distri-
bution can only be explained by overwater dispersal is
Tupaia nicobarica, which is endemic to the oceanic, iso-
lated Nicobar Islands (Fig. 1; Lyon 1913; Helgen 2005).
These exceptions are notable given the apparent in-
ability of treeshrews to cross seemingly insignificant
channels (e.g., Lombok Strait, which separates Bali from
Lombok Island and is only approximately 30 km at
its narrowest point; Kitchener et al. 1990). The current
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position of Urogale in our phylogeny suggests that this
treeshrew may have colonized the Philippines via over-
water dispersal early in the Tupaia radiation. Our anal-
ysis of alternate rooting positions suggests that this is
true not just for the majority root, but for the bulk of
roots, as they are concentrated around T. gracilis and U.
everetti on the backbone of the tree.

Our nuclear data do not support a close relationship
between the 2 Philippine treeshrews in our sample, T.
palawanensis and U. everetti. Although both of these
are Philippine endemics, they are not sympatric and
are endemic to regions that do not share close biogeo-
graphic affinities. Tupaia palawanensis occurs only in the
Palawan Faunal Region, which is typically more similar
to the Sunda Shelf than to other biogeographic areas
in the Philippines (Dickerson 1928; Heaney 1986; Essel-
styn et al. 2004). Our phylogenetic results suggest that
each may be related to Bornean or Sundaland taxa and
that treeshrews have colonized the Philippines at least
twice, possibly through 2 different routes. However, the
lack of some other Sundaic treeshrews in our data set
(including the Bornean endemics Tupaia picta and Tupaia
montana and the Indonesian Tupaia javanica) makes it im-
possible to draw strong conclusions about specific sister
relationships. We also currently lack samples of Tupaia
moellendorffi, the Calamian treeshrew, long considered
a subspecies of T. palawanensis but recently restored to
species status (Helgen 2005).

Other Ingroup Relationships
We continue to accumulate support for the close rela-

tionship of T. belangeri and T. glis, which together form a
problematic species complex. Even the limited number
of individuals of T. belangeri and T. glis included in this
study demonstrate that current species taxonomy may
not reflect monophyletic groups. Of the 5 individuals
of T. belangeri we sequenced, 1 is deeply divergent from
the rest and often groups with T. glis, as is clear in the
network (Fig. 5). These data also confirm the association
of T. longipes with the T. belangeri/T. glis species complex,
an association further supported by a synapomorphic
6-bp deletion in vWF exon 28. Likewise, our nuclear
data strongly support the close relationship between
T. splendidula and T. tana. In addition to the phyloge-
netic evidence, this clade is supported by a 69-bp inser-
tion/duplication event in the CREM 3′ UTR, found in
all 4 T. tana and 3 T. splendidula in our data set but in
no other taxon. Without complete taxon sampling for
the family Tupaiidae (which contains several species for
which, at present, no fresh tissue is available, and which
are codistributed with these taxa), we cannot say for cer-
tain that these 2 are sister species, but there seems to be
no question that they are each other’s closest relatives
in the taxon sample we currently have.

Sources of Conflict
The key to understanding conflict in these data is

2-fold. First, it is useful to separate rooting questions

from the topology of the ingroup. With Dendrogale, as in
Figure 5a, the conflict appears to be spread throughout
the tree and to be continuous along the backbone. The
myriad root positions supported by 1 or more genes, in
this case, overwhelm the conflict in the ingroup, which
is actually much less. Separating the root from the in-
group, as in Figure 5b, makes it clear that within the
ingroup, conflict is concentrated in several separate re-
gions. Indeed, when uncertainty about the root position
is removed by pruning the outgroup, some posterior
probabilities are considerably higher. The bipartition
of T. belangeri/T. glis/T. longipes/U. everetti versus the
rest of the ingroup, for example, has a posterior proba-
bility of 87.4% in the trees from the gene PLCB4 if the
outgroup is removed, but is much lower when the out-
group is included because the position of the outgroup
is so uncertain. The apparent low support for this rela-
tionship among ingroup taxa is really low support for
the root.

When the root is removed, conflicting evidence for
interspecific relationships (other than the T. belangeri/
T. glis species complex) is limited to 2 areas, and the
uncertainty of relationships among Urogale, T. gracilis,
and T. dorsalis is independent of the lesser uncertainty
involving T. palawanensis and T. minor. Indeed, without
the confusion added by the outgroup, the latter is clearly
a simple conflict between 2 opposing relationships, one
with somewhat greater probability than the other. This
is the benefit of using networks—in a standard consen-
sus, this node would collapse to a polytomy and there
would be no way of telling which possible relationships
had some support. The more significant conflict in the
tree involves U. everetti, T. gracilis, and T. dorsalis. In both
networks, it is clear that several alternate relationships
among these taxa have support from some genes, often
at less than 50% posterior probability (and often with
no relationships greater than 50%). The internodes sep-
arating these taxa appear to be very short, suggesting
that successive divergences were rapid. In this situation,
different genes may actually have different histories if
polymorphisms present at the time of divergence sort
differently. They may also appear to have different his-
tories because of stochasticity in the mutation process;
with only a few mutations defining a branch, it is harder
to separate signal from noise than with many.

Second, it is helpful to pay attention to the differ-
ence between relationships that are supported by only a
few genes and contradicted by others, and those that are
supported by only a few genes but not contradicted. The
monophyly of both T. splendidula and T. tana, for exam-
ple, is strongly supported by 2 genes (RAG2 and vWF,
and BDNF and vWF, respectively). In the network, both
these are shown as relationships without conflict—no
contradictory bipartitions exist at greater than 10% pos-
terior probability. The clade combining T. splendidula,
T. tana, and T. minor is also strongly supported by 2
genes (CREM and RAG2), but in this case, there is con-
flict: 2 other genes (Tyr and vWF) have strong support
for T. splendidula + T. tana + T. palawanensis, and this
is clear in the network. There is more support for the
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former relationship, but the network makes it possible
to see and identify the latter one as well.

The Difficulty of Rooting in Treeshrews
The 90% posterior probability we recovered for the

majority root is hardly overwhelming evidence in
Bayesian systematics, in which posterior probabilities
for robust clades are often considerably higher. The
evident difficulty in rooting the treeshrew phylogeny
stems from an unfortunate combination of factors: the
short branches separating nodes along the backbone of
the tree, and the long branch separating the ingroup
from our outgroup (D. murina). In the individual gene
trees, some of the shorter internodes collapse, resulting
in polytomies. This indicates that successive speciations
may have been quite close together and is precisely the
situation in which multiple genes are most likely to
disagree with each other—the stochastic nature of both
mutation and lineage sorting means that different genes
may well support different evolutionary patterns. At
the same time, no phylogenetic model is perfect, and
this combination of a long outgroup branch and short
internodes makes it particularly difficult for any phylo-
genetic method to reconstruct the root either accurately
or consistently. We used a combination of phylogenetics
and network methods to examine conflict surround-
ing both the root and ingroup relationships in more
detail. Conflict in the ingroup was worst along the
backbone of the tree, among T. gracilis, T. dorsalis, and
U. everetti, and nearly every possible relationship among
these taxa (including branching order and sister rela-
tionships among these taxa) was recovered with mod-
erate posterior probability by at least 1 gene. These
minority relationships are implicitly ignored by tradi-
tional consensus methods but can hold important infor-
mation about sources of phylogenetic uncertainty. It is
particularly interesting to note that among the ingroup
taxa, a bipartition of T. gracilis + Urogale was found at
a frequency greater than 15% in 4 of the 6 genes we
used (Table 2); this is the ingroup relationship recovered
by Olson et al. (2005) in their single maximum likeli-
hood (ML) tree. This is, of course, not high posterior
probability, but taken together, the evidence suggests
that relationships among these taxa may be particularly
sensitive to choice of gene, method, and parameters.

Combined versus Individual-Gene Analyses
Examining conflict among individual genes allows us

to see points that are not evident in the combined anal-
ysis. Likewise, examining minority signals allows us to
get a better idea of all the relationships supported by
the data. In this case, some high posterior probabilities
in the combined analysis seem to be driven by single
genes rather than by support across all the individual-
gene data. This is worrisome because the sample of
genes we have here is only a small proportion of the
genome, and it is reasonable to assume that the distri-

bution of support would change with a larger (or simply
different) sample. We therefore have only limited confi-
dence in relationships among T. gracilis, T. dorsalis, and
U. everetti. On the other hand, relationships for which
there is no substantial conflict in these genes, such as
the relationship between T. tana and T. splendidula, are
likely to be confirmed by further sampling.

Multigene Nuclear and Single-Gene Mitochondrial
Data in Systematics

This multigene nuclear data set confirms several of
the results of Olson et al. (2005), including the close
association between T. glis and T. belangeri, the associa-
tion of these taxa with T. longipes, and the relationships
among T. tana, T. splendidula, and T. minor. Indeed, with
the exception of the root and the relationship between
T. gracilis and U. everetti, our tree is identical to the
single optimal ML tree reported by Olson et al. (2005)
using the mitochondrial 12S rRNA gene. As we note
above, the root and these relationships are precisely
where there is the most uncertainty in the nuclear data.
Comparing these trees suggests that 12S alone is in sub-
stantial agreement with the multigene nuclear data set
and was probably doing an accurate job of reconstruct-
ing topology at this taxonomic level, although posterior
probabilities in the mitochondrial tree are generally
lower than those in the nuclear tree.

Future Directions
It is possible that additional taxa will, in the future,

help solidify the position of the root in this group. In
particular, data from Anathana, 1 of 2 genera missing
from our analysis, and from D. melanura might help by
breaking up the long branch between Tupaia/Urogale
and Dendrogale. The species of Tupaia we were unable
to include might also help, especially if their addition
stabilized the unclear relationships among T. gracilis,
T. dorsalis, and Urogale. In some cases, adding further
outgroups, as well as taxon sampling in the ingroup,
can help stabilize rooting. In treeshrews, however, the
distance from the family Tupaiidae to the next avail-
able outgroups (Ptilocercus, Dermoptera, and Primates;
Janecka et al., 2007) makes it nearly useless to add
outgroups even farther from the ingroup; alignment
uncertainty and the presence of multiple substitutions
at segregating sites rapidly overwhelm the useful data
that could be gained by this approach. Similarly, adding
more data (nuclear or mitochondrial) is only marginally
helpful in this situation. Faster-evolving genes result not
only in longer internodes, but also in a longer branch
to the outgroup; slower genes make the outgroup more
tractable, but reduce short internodes even more, of-
ten to zero. Simultaneously resolving ingroup nodes
and the root in this topology will probably require both
types of character data, making the multigene approach
even more necessary.
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APPENDIX

TABLE A1. Specimen information

Species Source Locality

Dendrogale murina UAM 103000 Cambodia: Mondulkiri; Seima Biodiversity Conservation Area
Tupaia belangeri FMNH 1654121 Zoo animal; no locality data available. ISIS M1194

USNM 5838573 Myanmar: Mon; 5 km northeast of Kinmun, at Yetagon Myaung in Kyaikhtiyo
Wildlife Sanctuary

USNM 5837935 Myanmar: Bago; Dawe, in Bago Yoma mounts
MVZ 1864074, 1864082 Vietnam: Vinh Phu; Vinh Yen District, Tam Dao

Tupaia dorsalis UMMZ 174651, 174427 Indonesia, Borneo: West Kalimantan; Ketapang Regency, Gunung Palung National
Park, Cabang Panti Research Site

Tupaia glis MVZ 192180 Indonesia, Sumatra: North Sumatra; 3 km northwest of Bukit Lawang
MVZ 192184 Indonesia, Sumatra: Aceh; Ketambe Research Station

Tupaia gracilis USNZ 109023 Malaysia, Borneo: Sabah; Sepilok
Tupaia longipes JS M02b Malaysia, Borneo: Sabah; Danum Valley Field Center
Tupaia minor USNZ 109751 Zoo animal; no locality data available
Tupaia palawanensis FMNH 168969 Philippines, Palawan: Palawan; Puerto Princesa Municipality, Tarabanan River
Tupaia splendidula UMMZ 1744282, 1744291, 1746523 Indonesia, Borneo: West Kalimantan; Ketapang Regency, Gunung Palung National

Park, Cabang Panti Research Site
Tupaia tana MVZ 1921931 Indonesia, Sumatra: Ketambe Research Station

JS M112 Malaysia, Borneo: Sabah; Danum Valley Field Center
USNZ 1090463, 1098504 Zoo animals; no locality data available

Urogale everetti FMNH 147781 Philippines, Mindanao: Bukidnon; Mount Katanglad Range

Notes: Voucher information for specimens sequenced in this study is given, arranged alphabetically by genus and species. Superscripts for
species represented by 3 or more specimens correspond to Figures 3 and 4. Museum or zoo catalog numbers are given in the second column.
Collecting localities are as provided by the loaning institution (more precise descriptions are available from the individual museums). Ab-
breviations: FMNH = Field Museum of Natural History; UAM = University of Alaska Museum; USNM = United States National Museum
of Natural History [Smithsonian Institution]; USNZ = United States National Zoo; MVZ = Museum of Vertebrate Zoology, University of
California, Berkeley; UMMZ = University of Michigan Museum of Zoology; JS = specimens collected by J. South and deposited at the Univer-
siti Malaysia Sabah.


